Beam Trawl (Shrimp) on Seagrass (SACs)

Introduction

The Assessing Welsh Fisheries Activities Project is a structured approach to determine the impacts from current and potential fishing activities, from licensed and registered commercial fishing vessels, on the features of Marine Protected Areas.

1. Gear and Feature	Beam Trawl (Shrimp) Trawl on Seagrass (SACs)
2. Risk Level	Purple (High risk)
3. Description of Feature	Seagrass beds are comprised of several relevant biotopes (see annex 1 for full biotope descriptions).
	Intertidal seagrass beds biotope LS.LMp.LSgr (and its sub-biotope LS.LMp.LSgr.Znol) are typically dominated by <i>Zostera nolteii</i> .
	Subtidal seagrass beds biotope SS.SMp.SSgr has sub-biotopes SS.SMp.SSgr.Zmar (dominated by <i>Zostera marina/angustifolia</i> (Note: the taxonomic status of <i>Z. angustifolia</i> is currently under consideration, currently <i>Z. angustifolia</i> is considered a synonym of <i>Z. marina</i>) and SS.SMp.SSgr.Rup (featuring <i>Ruppia maritima</i>).
	Seagrass beds develop in intertidal and shallow subtidal areas on sands and muds. They may be found in marine inlets and bays but also in other areas, such as lagoons and channels, which are sheltered from significant wave action (BRIG, 2008).
	The Zostera species that occur in the UK all are considered to be scarce. Dwarf eelgrass Zostera nolteii is found highest on the shore, often adjacent to lower saltmarsh communities. Narrow-leaved eelgrass Zostera marina is found on the mid to lower shore and in the sublittoral. The plants stabilise the substratum, are an important

source of organic matter and provide shelter and a surface for attachment by other species.

Eelgrass is an important source of food for wildfowl which feed on intertidal beds. Where this habitat is well developed the leaves of eelgrass plants may be colonised by diatoms and algae such as *Ulva* spp., *Cladophora* ssp., Red Seagrass Crust *Rhodophysema georgii*, *Ceramium virgatum*, stalked jellyfish and anemones. The soft sediment infauna may include amphipods, polychaete worms, bivalves and echinoderms.

The shelter provided by seagrass beds makes them important nursery areas for flatfish and, in some areas for cephalopods. Adult fish frequently seen in *Zostera* beds include pollack *Pollachius pollachius*, two-spotted goby *Gobiusculus flavescens* and various wrasse species (BRIG, 2008; Bertelli & Unsworth, 2014). Two species of pipefish, *Entelurus aequoraeus* and *Syngnathus typhie* are almost totally restricted to seagrass beds while the red algae *Polysiphonia harveyi* which has only recently been recorded from the British Isles is often associated with eelgrass beds (BRIG, 2008).

The diversity of species associated with the seagrass bed will depend on environmental factors such as salinity and tidal exposure and the density of microhabitats, but it is potentially highest in the perennial fully marine subtidal communities and may be lowest in intertidal, estuarine, annual beds (BRIG, 2008).

Zostera beds are naturally dynamic and may show marked seasonal changes. Leaves are shed in winter, although Zostera noltii retains its leaves longer than Zostera marina. Leaf growth stops in September/October (Brown, 1990).

Although a wide range of species are associated with seagrass beds which provide habitat and food resources, these species occur in a range of other biotopes and were therefore not considered to characterize the sensitivity of this biotope (D'Avack *et al*, 2014).

Seagrass species are fast-growing and relatively short-lived, they can
take a considerable time to recover from damaging events, if recovery
does occur at all (D'Avack et al, 2014).

Boese *et al* (2009) found that natural seedling production was not of significance in the recovery of seagrass beds but that recovery was due exclusively to rhizome growth from adjacent perennial beds. All *Zostra* plants have a similar type of structure and they are restricted to horizontal growth of roots and, hence, unable to grow rhizomes vertically.

4. Description of Gear

A beam trawl consists of a cone-shaped body of net ending in a bag or codend, which retains the catch. In these trawls the horizontal opening of the net is provided by a beam, made of wood or metal, attached to two solid metal plates called 'shoes'. These 'shoes' are welded to the end of the beam which slide over the seabed when the beam and net are dragged by the vessel (FAO, 2001).

When fishing for flatfish, mainly sole or plaice, the beam trawl is equipped with tickler chains to disturb the fish from the seabed. For operations on rough fishing grounds chain matrices/mats can be used. Chain matrices/mats are rigged between the beam and the ground rope to prevent damage to the net and to prevent boulders/stones from being caught by the trawl.

A beam trawl is normally towed on outriggers with one 4m beam trawl on each side of a powerful vessel, the gear can reach a weight of up to 9000kg. A 'Eurocutter' beam trawler with an engine power <221Kw will leave parallel trawl tracks of approximately 4m wide and 11m apart on the seabed (ICES, 2014). The total length of the net used on a 'Eurocutter' should be between 10 and 15m.

Inshore vessels may use one smaller beam, approximately 2m, off the stern of the vessel. The total length of the net should be about 5m.

The penetration depth of a beam trawl ranges from 1 to 8cm but depends on the weight of the gear and the towing speed, as well as on the type of substrate (Paschen *et al*, 2000).

Beam trawl (shrimp) gear is lighter than a flat fish beam trawl, the trawl net has a smaller mesh size and does not use tickler chains. A ground rope with rubber bobbins is used, this rolls over the sea bed to flush up the shrimp, keeping the shrimp beam trawl in contact with the bottom and gives flatfish an opportunity to escape.

There is a requirement for all trawls fishing for shrimp in Welsh waters to be fitted with a separator trawl (veil) or sorting grid (Welsh Government, 2008) to reduce bycatch of fish.

5. Assessment of Impact Pathways:

- 1. Damage to a designated habitat feature (including through direct physical impact, pollution, changes in thermal regime, hydrodynamics, light etc).
- 2. Damage to a designated habitat feature via removal of, or other detrimental impact on, typical species.

Beam Trawl (Shrimp) gear impacts can directly and indirectly effect the seagrass habitat.

1. Demersal mobile fishing gear reduces habitat complexity by: removing emergent epifauna, smoothing sedimentary bedforms, and removing taxa that produce structure (Auster & Langton, 1999). Demersal beam trawl gear has a direct physical effect on the seabed wherever the beams, shoes, mats, nets and chains have contact with the seabed. Ways in which gear affects the seabed can be classified as: scraping and ploughing; sediment resuspension; and physical destruction, removal, or scattering of non-target benthos (Jones, 1992).

As a sensitive marine habitat, seagrass meadows are highly susceptible to physical impacts and disturbance of the habitat (Short & Wyllie-Echeverria, 1996). Most seagrass species, including *Zostera marina* and *Zostera noltii*, grow over sandy to muddy sediments, which are easily penetrated by seagrass roots. The direct ploughing and scraping of the beam trawl gear on seagrass could cause mortality from a single pass of a beam trawl. The penetration depth of a beam trawl ranges from 1-8cm (Paschen *et al*, 2000), and could remove the upper layers of sediment on which the seagrasses are reliant for anchoring and nutrient uptake.

Unsworth and Cullen-Unsworth (2015) investigated the effects of physical disturbance on seagrass meadows in Porthdinllaen, within the Pen Llyn a'r Sarnau Special Areas of Conservation. They conclude that the chains and anchors associated to various types of moorings drag over the seagrass and repeatedly tear the plants, eventually ripping up their roots and rhizomes and reducing the capacity for recovery to occur. The effects of towed demersal gear, such as beam trawl gear, on seagrasses is likely to be greater than the damage caused by anchoring and moorings.

A depression of the seabed caused by disturbance of the sediment can restrict the expansion of the seagrass bed. The size and shape of impacted areas will have a considerable effect on resilience rates (Creed *et al*, 1999). Larger denuded areas (such as those caused by towed demersal fishing gear) are likely to take longer to recover than smaller scars, for example seagrass beds likely to be more resilient to physical damage resulting from narrow furrows left after anchoring because of large edge-to-area ratio and related availability of plants for recolonisation.

Neckles *et al* (2005) investigated the effects of trawling for the blue mussels *Mytilus edulis* on *Zostera marina* beds in Maquoit Bay, USA. Impacted sites ranged from 3.4 to 31.8ha in size and were characterized by the removal of above and below ground plant material from the majority of the seabed. The study found that one year after the last trawl, *Zostera marina* shoot density, shoot height and total biomass changed between 2-3%, 46-61% and <1% to that of the reference sites. Substantial differences in *Zostera marina* biomass persisted between disturbed and reference sites up to 7 years after trawling. Rates of recovery depended on initial fishing intensity but the authors estimated that an average of 10.6 years was required for *Zostera marina* shoot density to match pre-trawling standards.

The effects of dredging for scallops on *Zostera marina* beds were investigated by Fonseca et al (1984) in Nova Scotia, USA. Dredging was carried out when Zostera marina was in its vegetative stage on hard sand and on soft mud substrata. Damage was assessed by analysing the effects of scallop harvesting on seagrass foliar dry weight and on the number of shoots. Lower levels of dredging (15 dredges) had a different impact depending on substrata, with the hard bottom retaining a significantly greater overall biomass than soft bottom. However, an increase in dredging effort (30 dredges) led to a significant reduction in Zostera marina biomass and shoot number on both hard and soft bottoms. Solway Firth is a British example for the detrimental effects of dredging on seagrass habitats. In the area, where harvesting for cockles by hand is a traditional practice, suction dredging was introduced in the 1980s to increase the yield. A study by Perkins (1988) found that where suction dredging occurred, the sediment was smoothened and characterized by a total absence of Zostera plants. The study concluded that the fishery was causing widespread damage and could even completely eradicate Zostera from affected areas. Due to concerns over the sustainability of this fishing activity, the impacts on cockle and Zostera stocks, and the effects on overwintering wildfowl, the fishery was closed to all forms of mechanical harvesting in 1994.

Most seagrass species grow over sandy to muddy sediments, which are easily penetrated by seagrass roots. However, highly mobile, but otherwise suitable, sandy sediments may be bare of seagrass (Hemminga & Duarte, 2000). Processes that cause sand ripples and waves can cause successive burial and erosion, which may cause seagrass mortality, depending on the size and frequency of these events. Sediment disturbance caused by beam trawling is likely to cause a greater intensity of burial and erosion in a single pass of the gear than caused by current and wave energy. Below ground rizomes and root structures are dependant on the upper few centimeters of sediment for nutrients. Continued beam trawling events could reduce the nutrient levels within sediments and make recovery difficult. The depth limit of seagrasses is set by the compensation irradiance for

growth, or the irradiance required to provide sufficient carbon gains to compensate for carbon losses.

The light requirement for seagrass growth is typically defined as the percentage of surface irradiance that needs to be received by the plants to grow, which ranges between 4% and 29% (Dennison *et al*, 1993), with an average of about 11% of the irradiance incident just below the water surface (Duarte, 1991). These light requirements are greater than those generally observed for other marine phototrophs, such as macroalgae and microalgae (Duarte, 1995). These extremely high light requirements mean that seagrasses are acutely responsive to environmental changes, especially those that alter water clarity (Orth *et al*, 2006).

Duarte *et al* (2007) sought to test seagrass depth limit models from test data comprising 424 reports of seagrass colonisation depth limits. Most (86%) of the reports in the validation set assembled pertained to observations of colonisations depth of *Zostera marina*. The results showed that *Zostera marina* has a colonisation depth range of between 0.5-10m. This data has taken into account varying levels of turbidity. Duarte *et al* (2007) does however make the argument that clear water could allow seagrasses to grow at a depth of 30m. At these depths, the contribution of absorption of water filters out irrandiance at red wavelengths while allowing high-energy blue light to penetrate and promote photosynthesis.

Trawling and dredging re-suspend large amounts of sediments (Pilskaln *et al*, 1998). The increase in turbidity through sediment resuspension caused by beam trawling would influence the photosynthesis of seagrasses, which could cause mortality. Riemann and Hoffmann (1991) found short-term increased suspended sediment loads of 960-1361%.

In conclusion, a single pass of beam trawling (shrimp) gear could remove the feature and further passes could remove the nutrient rich sediment, reducing the likelihood of recolonisation.

Changes in light availabity caused by sediment re-suspension could cause seagrass mortality, without guarantee of recolonisation or recovery.

2. Beam trawls cause direct mortality to non-target organisms through shoe, tickler chain or chain mat impact on the seabed (Bergman & van Santbrink, 2000).

Beam trawling is a source of physical disturbance to marine sedimentary communities in areas usually less than 50m deep. Chains attached between the beam trawl shoes are designed to penetrate the upper few centimetres of the sediment, which leads to damage or removal of some infaunal and epifaunal species (Kaiser & Spencer, 1996).

There is growing evidence that seagrass meadows are presently experiencing worldwide decline primarily because of human disturbance, such as direct physical damage and deterioration of water quality (Short & Wyllie-Echeverria, 1996; Hemminga & Duarte, 2000). There is, therefore, concern that the functions seagrasses perform in the marine ecosystem will be reduced or, in some places, lost altogether (Duarte, 2002). Fisheries operations, particularly shallow trawling (Pascualini *et al*, 1999) causes disturbance and damage to seagrass communities.

Seagrass meadows can serve as a nursery ground, often to juvenile stages of economically important species of finfish and shellfish, although the species vary by region and climate (Beck *et al*, 2001; Heck *et al*, 2003). The loss of seagrasses, through physical disturbance from shrimp beam trawling, would therefore impact on the typical species in which it supports.

Collie *et al* (2000) undertook an analysis of published research into fishing activity impacts on the seabed, based on 39 research projects undertaken previously. They found an average of 46% decrease in total number of individuals of a species in study sites that were disturbed with bottom towed gear.

		In conclusion, seagrass loss through beam trawling (shrimp) could cause a detrimental impact on typical species through loss of food and removal of nursery areas for juvenile finfish and shellfish species. Beam trawling (shrimp) could also directly remove typical species from the feature. Typical species recolonisation of this habitat would be dependent on the quality of habitat which remained following a trawling episode. Where there is damage to the habitat, mobile species would be quick to recolonise. If there is the total removal of seagrasses, recolonisation would not occur.
6. MPAs where feature exists	Menai Strait and Conwy Bay SAC	Intertidally between Llanfairfechan and Bangor, at Moel-y-Don opp Felinheli and within Y Foryd.
	Lleyn Peninsular and Sarnau SAC	Intertidal and Subtidal beds at Porth Dinllaen, Llanbedrog, intertidally at Pen y chain, subtidally off Criccieth (within 1Nm).
	Pembrokeshire Marine SAC	Subtidally within North Haven at Skomer, intertidally and subtidally within the Milford Haven at Sandy Haven Bay, intertidally on Dale Flats, subtidally and intertidally between South Hook Point and Milford Docks, Sprinkle Pill, Garron Pill, Cresswell River, Carew River, Cosheston Pill, West Llanion Pill, Pembroke River, Pwllcrochan Flats, Angle Bay, off Ellen's Well and the Lifeboat station.
	Carmarthen Bay and Estuaries SAC	River Towy (between Salmon Point and Ferryside), within the Burry Inlet at Llanridian Sands and Penrhyn Gwyn.
	Severn Estuary SAC	Located between Summerleaze and the M4 Severn Crossing.

7. Conclusion

The information presented above indicates that the action of fishing with beam trawl (shrimp) gear directly on seagrass (SACs) is likely to cause lethal damage to the seagrass and associated species, while recovery is possible (up to 10.6 years) this would be less likely if the upper centimeters of sediment were removed during initial interaction or prolonged fishing. Additionally, fishing with beam trawl (shrimp) gear adjacent to seagrass beds could have a negative impact from short or long term sediment re-suspension causing an increase in turbidity, thus affecting photosynthesis; this impact would depend on the extent and frequency of the activity and the tidal and environmental conditions in the area of the habitat.

8. References

- Auster, P.J. & Langton, R.W. (1999). The effects of fishing on fish habitat. In: Benaka L (ed) Fish habitat essential fish habitat (EFH) and rehabilitation. Am Fish Soc 22:150-187
- Beck, M.W., Heck Jr, K.L., Able, K.W., Childers, D.L., Eggleston, D.B., Gillanders, B.M., Halpern, B., Hays, C.G., Hoshino, K., Minello, T.J., Orth, R.J. (2001). The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. *Bioscience*, *51*(8), pp.633-641.
- Bergman, M.J.N. & Santbrink, J.van. (2000). Mortality in megafaunal benthic populations caused by trawl fisheries on the Dutch continental shelf in the North Sea in 1994 ICES J. Mar. Sci. 57 (5): 1321-1331
- Bertelli, C.M. & Unsworth, R.K.F. (2014). Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Marine Pollution Bulletin, Vol. 83, Issue 2: 425-429
- Boese, B.L., Kaldy, J.E., Clinton, P.J., Eldridge, P.M. & Folger, C.L. (2009). Recolonization of intertidal *Zostera marina* L. (eelgrass) following experimental shoot removal. *Journal of Experimental Marine Biology and Ecology*, **374** (1), 69-77.
- BRIG. (ed. Ant Maddock) (2008). UK Biodiversity Action Plan Priority Habitat Descriptions: Seagrass Beds (available from http://jncc.defra.gov.uk/page-5706)
- Brown, R.A. (1990). Strangford Lough. The wildlife of an Irish sea lough. The Institute of Irish Studies, Queens University of Belfast.
- Collie, J.S., Hall, S.J., Kaiser, M.J. & Poiner, I.R. (2000). A quantitative analysis of fishing impacts shelf-sea benthos. Journal of Animal Ecology, 69(5), 785–798.
- Creed, J.C., Filho, A. & Gilberto, M. (1999). Disturbance and recovery of the macroflora of a seagrass *Halodule wrightii* (Ascherson) meadow in the Abrolhos Marine National Park, Brazil: an experimental evaluation of anchor damage. *Journal of Experimental Marine Biology and Ecology*, **235** (2), 285-306.
- D'Avack, E.A.S., Tillin, H., Jackson, E.L. & Tyler-Walters, H. (2014). Assessing the sensitivity of seagrass bed biotopes to pressures associated with marine activities. JNCC Report No. 505. *Joint Nature Conservation Committee*, Peterborough. Available from www.marlin.ac.uk/publications.
- Dennison, W.C., Orth, R.J., Moore, K.A., Stevenson, J.C., Carter, V., Kollar, S., Bergstrom, P.W., Batiuk, R.A. (1993). Assessing water quality with submersed aquatic vegetation. *BioScience*, 43, 86 94.
- Duarte, C.M. (1991). Seagrass depth limits. *Aquatic Botany*, 40, 363 377.
- Duarte, C.M. (1995). Submerged aquatic vegetation in relation to different nutrient regimes. *Ophelia*, 41, 87 112.
- Duarte, C.M. (2002). The future of seagrass meadows. *Environmental Conservation*, 29, 192-206.
- Duarte, C.M., Marba, N., Krause-Jensen, D., Sanchez-Camacho, M. (2007). Testing the predictive power of seagrass depth limit models. Estuaries and Coasts, 30, 652-656.
- FAO. (2001). Fishing Gear types. Beam trawls. Technology Fact Sheets. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 13 September 2001. [Cited 10 January 2017]. http://www.fao.org/fishery/geartype/305/en

- Fonseca, M.S., Thayer, G.W., Chester, A.J. & Foltz, C. (1984). Impact of scallop harvesting on eelgrass (*Zostera marina*) meadows. *North American Journal of Fisheries Management*, **4** (3), 286-293.
- Heck Jr, K.L., Hays, G., Orth, R.J. (2003). Critical evaluation of the nursery role hypothesis for seagrass meadows. *Marine Ecology Progress Series*, 253, 123-136.
- Hemminga, M.A. & Duarte, C.M. (2000). Seagrass ecology. *Cambridge University Press*.
- ICES. (2014). Second Interim Report of the Working Group on Spatial Fisheries Data (WGSFD), 10–13 June 2014, ICES Headquarters, Copenhagen, Denmark . ICES CM 2014/SSGSUE:05. 102 pp.
- Jones, B. (1992). Environmental impact of trawling on the seabed: A review, New Zealand Journal of Marine and Freshwater Research, 26:1, 59-67,
- Kaiser, M.J. & Spencer, B.E. (1996). The Effects of Beam-Trawl Disturbance on Infaunal Communities in Different Habitats. Journal of Animal Ecology, Vol 65, No. 3 pp.348-358
- Neckles, H.A., Short, F.T., Barker, S. & Kopp, B.S. (2005). Disturbance of eelgrass *Zostera marina* by commercial mussel *Mytilus edulis* harvesting in Maine: dragging impacts and habitat recovery. *Marine Ecology Progress Series*, **285**, 57-73.
- Orth, R.J., Carruthers, T.J., Dennison, W.C., Duarte, C.M., Fourqurean, J.W., Heck Jr, K.L., Hughes, A.R., Kendrick, G.A., Kenworthy, W.J., Olyarnik, S., Short, F.T. (2006). A global crisis for seagrass ecosystems. *Bioscience*, *56*(12), pp.987-996.
- Paschen, M., Richter, U. & Ko"pnick, W. (2000). Trawl Penetration in the Seabed (TRAPESE). Final report Contract No. 96–006.
- Pascualini, V., Pergent-Martini, C., Pergent, G. (1999). Environmental impact identification along the Corsican coast (Mediterranean sea) using image processing. *Aquatic Botany*, 65, 311-320.
- Perkins, E.J. (1988). The impact of suction dredging upon the population of cockles *Cerastoderma edule* in Auchencairn Bay. *Report to the Nature Conservancy Council, South-west Region, Scotland,* no. NC 232 I).
- Pilskaln, C.H., Churchill, J.H., Mayer, L.M. (1998). Frequency of bottom trawling in the Gulf of Maine and speculations on the geochemical consequences. Conservation Biology 12: 1223-1229
- Riemann, B., Hoffmann, E. (1991). Ecological consequences of dredging and bottom trawling in the Limfjord, Denmark. Marine Ecology Progress Series 69:171-178.
- Short, F.T. & Wyllie-Echeverria, S. (1996). Natural and human-induced disturbances of seagrasses. *Environmental Conservation*, 23, 17-27. University of Rostock, Rostock, Germany. 150 pp.
- Unsworth, R.K.F. & Cullen-Unsworth, L.C. (2015). Pen Llyn a'r Sarnau Special Area of Conservation (SAC) Porthdinllaen Seagrass Project: A review of current knowledge. Report for Gwynedd Council.
- Welsh Government. (2008). Welsh Statutory Instrument 2008 No.1811 (W.175). The Shrimp Fishing Nets (Wales) Order 2008

Annex 1

Biotope descriptions (version 15.03) (JNCC - http://jncc.defra.gov.uk/marine/biotopes/hierarchy.aspx?level=5)

SS.SMp.SSgr - Sublittoral seagrass beds.

Beds of seagrass (*Zostera marina* or *Ruppia* spp.) in shallow sublittoral sediments. These communities are generally found in extremely sheltered embayments, marine inlets, estuaries and lagoons, with very weak tidal currents. They may inhabit low, variable and full salinity marine habitats. Whilst generally found on muds and muddy sands they may also occur in coarser sediments, particularly marine examples of *Zostera* communities.

SS.SMp.SSgr.Zmar - Zostera marina/angustifolia beds on lower shore or infralittoral clean or muddy sand

Expanses of clean or muddy fine sand and sandy mud in shallow water and on the lower shore (typically to about 5 m depth) can have dense stands of *Zostera marina/angustifolia*. In Zmar the community composition may be dominated by these *Zostera* species and therefore characterised by the associated biota. Other biota present can be closely related to that of areas of sediment not containing *Zostera marina*, for example, *Laminaria saccharina*, *Chorda filum* and infaunal species such as *Ensis* spp. and *Echinocardium cordatum*. From the available data it would appear that a number of sub-biotopes may be found within this biotope dependant on the nature of the substratum and it should be noted that sparse beds of *Zostera marina* may be more readily characterised by their infaunal community. For example, coarse marine sands with seagrass have associated communities similar to MoeVen, SLan or Glap whilst muddy sands may have infaunal populations related to EcorEns, ArelSa and FfabMag. Muddy examples of this biotope may show similarities to SundAasp, PhiVir, Are or AfilMysAnit. At present the data does not permit a detailed description of these sub-biotopes but it is likely that with further study the relationships between these assemblages will be clarified. Furthermore, whilst the *Zostera* biotope may be considered an epibiotic overlay of established sedimentary communities it is likely that the presence of *Zostera* will modify the underlying community to some extent. For example, beds of this biotope in the south-west of Britain may contain conspicuous and distinctive assemblages of Lusitanian fauna such as *Laomedea angulata*, *Hippocampus* spp. and *Stauromedusae*.

SS.SMp.SSgr.Rup - Ruppia maritima in reduced salinity infralittoral muddy sand

In sheltered brackish muddy sand and mud, beds of *Ruppia maritima* and more rarely *Ruppia spiralis* may occur. These beds may be populated by fish such as *Gasterosteus aculeatus* which is less common on filamentous algal-dominated sediments. Seaweeds such as *Chaetomorpha* spp., *Enteromorpha* spp., *Cladophora* spp., and *Chorda filum* are also often present in addition to occasional fucoids. In some cases the stoneworts *Lamprothamnium papulosum* and *Chara aspera* occur. Infaunal and epifaunal species may include mysid crustacea, the polychaete *Arenicola marina*, the gastropod *Hydrobia ulvae*, the amphipod *Corophium volutator* and oligochaetes such as *Heterochaeta costata*. In some areas *Zostera marina* may also be interspersed with the *Ruppia* beds.